Neyman-Pearson lemma

Neyman-Pearson lemma
French\ \ lemme de Neyman-Pearson
German\ \ Neyman-Pearson-Lemma
Dutch\ \ lemma van Neyman-Pearson
Italian\ \ lemma di Neyman-Pearson
Spanish\ \ lema de Neyman-Pearson
Catalan\ \ lema de Neyman-Pearson
Portuguese\ \ lema de Neyman-Pearson
Romanian\ \ -
Danish\ \ Neyman-Pearson lemma
Norwegian\ \ -
Swedish\ \ -
Greek\ \ λήμμα των Neyman-Pearson
Finnish\ \ Neymanin-Pearsonin lemma; Neymanin-Pearsonin apulause
Hungarian\ \ Neyman-Pearson lemma
Turkish\ \ Neyman-Pearson'ın yardımcı önermesi; Neyman-Pearson'ın leması
Estonian\ \ Neyman-Pearsoni lemma
Lithuanian\ \ Neyman ir Pearson lema; Neimano ir Pirsono lema
Slovenian\ \ -
Polish\ \ lemat Neymana-Pearsona
Russian\ \ лемма Неймана-Пирсона
Ukrainian\ \ Неймана - Пірсона лема
Serbian\ \ -
Icelandic\ \ -
Euskara\ \ Neyman-Pearson lema
Farsi\ \ -
Persian-Farsi\ \ لم نيمن-پي‌يرسون
Arabic\ \ بديهية نيمان بيرسون
Afrikaans\ \ Neyman-Pearson-lemma
Chinese\ \ 内 曼 ― 皮 尔 逊 引 理
Korean\ \ 네이만-피어슨 보조정리

Statistical terms. 2014.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Neyman-Pearson-Lemma — Das Neyman Pearson Lemma ist ein Satz der mathematischen Statistik, der eine Optimalitätsaussage über die Konstruktion eines Hypothesentests macht. Gegenstand des Neyman Pearson Lemmas ist das denkbar einfachste Szenario eines Hypothesentests:… …   Deutsch Wikipedia

  • Neyman–Pearson lemma — In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson, states that when performing a hypothesis test between two point hypotheses H0: θ = θ0 and H1: θ = θ1, then the likelihood ratio test …   Wikipedia

  • Neyman-Pearson lemma — In statistics, the Neyman Pearson lemma states that when performing a hypothesis test between two point hypotheses H 0: θ = θ 0 and H 1: θ = θ 1, then the likelihood ratio test which rejects H 0 in favour of H 1 when:Lambda(x)=frac{ L( heta {0}… …   Wikipedia

  • Egon Sharpe Pearson — (* 11. August 1895 in Hampstead; † 12. Juni 1980 London) war ein britischer Statistiker. Er ist der Sohn von Karl Pearson. Pearson folgte seinem Vater als Professor für Statistik am University College London. Er war Herausgeber der Zeitschrift… …   Deutsch Wikipedia

  • Jerzy Neyman — (* 16. April 1894 in Bendery, Moldawien; † 5. August 1981 in Oakland, Kalifornien) war ein polnischer Mathematiker und Autor wichtiger statistischer Bücher. Das Neyman Pearson Lemma ist nach ihm benannt. Neyman in Warschau 1973 …   Deutsch Wikipedia

  • Jerzy Neyman — Born April 16, 1894(1894 04 16) Bendery, Bessarabia, Imperial Russia Died August 5, 1981(1981 …   Wikipedia

  • Egon Pearson — Egon Sharpe Pearson (* 11. August 1895 in Hampstead; † 12. Juni 1980 Midhurst) war ein britischer Statistiker. Er ist der Sohn von Karl Pearson. Pearson folgte seinem Vater als Professor für Statistik am University College London. Er war… …   Deutsch Wikipedia

  • Karl Pearson — Infobox Scientist name = Karl Pearson |300px caption = Karl Pearson (né Carl Pearson) birth date = birth date|1857|3|27|mf=y birth place = Islington, London, England death date = death date and age|1936|4|27|1857|3|27|mf=y death place =… …   Wikipedia

  • Egon Pearson — Egon Sharpe Pearson (Hampstead, 11 August 1895 – London, 12 June 1980) was the only son of Karl Pearson, and like his father, a leading British statistician. He went to Winchester School and Trinity College, Cambridge, and succeeded his father as …   Wikipedia

  • Type I and type II errors — In statistics, the terms Type I error (also, α error, or false positive) and type II error (β error, or a false negative) are used to describe possible errors made in a statistical decision process. In 1928, Jerzy Neyman (1894 1981) and Egon… …   Wikipedia

  • Founders of statistics — Statistics is the theory and application of mathematics to the scientific method including hypothesis generation, experimental design, sampling, data collection, data summarization, estimation, prediction and inference from those results to the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”